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Let G be a graph. A partial function f: V(G) — V(G) is a partial
automorphism of G if f is an isomorphism of G[Dom(f)] and
G[Range(f)] (subgraphs of G induced on Dom(f) and Range(f)).
If a is an automorphism of G such that f C «, we say that f
extends to a.

Example

> A graph G is vertex-transitive if every partial automorphism f
with |[Dom(f)| < 1 extends to an automorphism of G.

» A graph G is edge-transitive (arc-transitive) if every partial
automorphism f with Dom(f) = {u, v}, where uv € E(G),
extends to an automorphism of G.
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Definition (EPPA, extension property for partial
automorphisms)

Let H be a graph and let G be its induced subgraph. H is an
EPPA-witness for G if every partial automorphism of G extends to
an automorphism of H.

A class C of finite graphs has EPPA if for every G € C there is

H < C, which is an EPPA-witness for G.

Theorem (Hrushovski, 1992)
The class of all finite graphs has EPPA.
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Intro for sophisticated people

Let G < Sym(N) be closed, i.e. G = Aut(M) for some structure
M.

Definition (HHLS'93, KR'07)
M has n-generic automorphisms if the action of G by diagonal

conjugation has a comeagre orbit on G”. It has ample generics if it
has n-generic automorphisms for every n > 1.

Ample generics imply the small index property, uncountable
cofinality, or the 21-Bergman property.
Theorem (HHLS'93, KR'07)

Let M be structure and G = Aut(M). Assume that M has APA
and there is a sequence Gy < G; < --- < G of compact subgroups
such that G = J; G;. Then M has ample generics.
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A connection
Suppose that a class of finite graphs C has EPPA. Pick Gg € C.

@Gl G2 |G:

Let M be the union of the chain. Every partial automorphism of M
with finite domain extends to an automorphism of M (i.e. M is
homogeneous).

“Aut(M) = (JAut(G;)"
Observation (Kechris, Rosendal'07)

The class of all substructures of a homogeneous structure M has
EPPA if and only if Aut(M) can be written as the closure of a
chain of compact subgroups.
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A lower bound

Observation (Hrushovski, 1992)

There is G such that every EPPA-witness for G has at least
Q(2"/?) vertices, where n = |V(G)] .

Proof.

» G is bipartite, with
V(G) =[2m] ={0,...,2m -1}
andu~viffu+m<v.

@ Every permutation of [m] is a
partial automorphism of G.

» Pick any EPPA-witness and any
S C [m]. There is a vertex v
connected to S and not
connected to [m] \ S.

» Hence every EPPA-witness for G
has at least Q(2™) vertices.
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Multiple partial automorphisms are a different beast
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Fix G. Define graph H: 11 ® ° °

> Vertices of H are pairs (v, ), where
v € G is the projection and
f: G\ {v}— {0,1} is the opinion,

> {(i,f),(j,f")} € E(H), if and only
if i # i and F(j) # ().
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> Vertices of H are pairs (v, ), where 10
v € G is the projection and
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f(x) otherwise.
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Fix G. Define graph H: 11
> Vertices of H are pairs (v, ), where 10
v € G is the projection and
f: G\ {v}— {0,1} is the opinion,
> {(i,f),(,f")} € E(H), if and only 01
if i # 1" and f(j) # '(i).
00

@ |V(H)| = 271

» Embed G — H sending v — (v, )
with f having nonzero opinion G
about its smaller neighbours.

Remark
This can be straightforwardly generalised to arbitrary relational structures
and less straightforwardly one can also add unary functions.
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» Class of all graphs [Hrushovski, 1992],
» classes of all K,-free graphs, n > 2 [Hodkinson—-Otto, 2003]
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Classification programme of homogeneous structures

Using the [Lachlan-Woodrow, 1980] classification of homogeneous
graphs, we know all EPPA classes of graphs:

>
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Class of all graphs [Hrushovski, 1992],

classes of all K,-free graphs, n > 2 [Hodkinson—Otto, 2003]
various classes of disjoint unions of cliques [easy],
complements thereof,

subgraphs of the finite homogeneous graphs [Gardiner76].
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ALL THOSE EPPA CLASSES (STRENGTHENINGS OF THE
HERWIG-LASCAR THEOREM)

JAN HUBICKA, MATEJ KONECNY, AND JAROSLAV NESETRIL
ApsTRACT. Let A be a finite structure. We say that a finite structure B is

an extension property for partial automorphisms (EPPA)-witness for A if it
cemtaing A ag a euhetructure and sverv isamarnhism of suhatrietures of A

Strengthens [Herwig—Lascar, 2000], [Hodkinson—Otto, 2003]
and [Evans—Hubitka—NeZet¥il, 2021].

General constructions of EPPA-witnesses, sufficient conditions
for a class to have EPPA.

Most of the known relational homogeneous structures.

Conditions almost isomorphic to [Hubi¢ka—NeZet¥il, 2017] for
Ramsey properties.
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Question Thank yOU!
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For non-k-regular graphs, add “half-edges” to make them regular.



