Extending partial automorphisms

Matěj Konečný

Charles University, Faculty of Mathematics and Physics, Prague

McGill Descriptive Dynamics and Combinatorics Seminar 24 Jan 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let **G** be a graph. A partial function $f: V(\mathbf{G}) \to V(\mathbf{G})$ is a partial automorphism of **G** if f is an isomorphism of $\mathbf{G}[\operatorname{Dom}(f)]$ and $\mathbf{G}[\operatorname{Range}(f)]$ (subgraphs of **G** induced on $\operatorname{Dom}(f)$ and $\operatorname{Range}(f)$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let **G** be a graph. A partial function $f: V(\mathbf{G}) \to V(\mathbf{G})$ is a partial automorphism of **G** if f is an isomorphism of $\mathbf{G}[\operatorname{Dom}(f)]$ and $\mathbf{G}[\operatorname{Range}(f)]$ (subgraphs of **G** induced on $\operatorname{Dom}(f)$ and $\operatorname{Range}(f)$). If α is an automorphism of **G** such that $f \subseteq \alpha$, we say that f extends to α .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let **G** be a graph. A partial function $f: V(\mathbf{G}) \to V(\mathbf{G})$ is a partial automorphism of **G** if f is an isomorphism of $\mathbf{G}[\operatorname{Dom}(f)]$ and $\mathbf{G}[\operatorname{Range}(f)]$ (subgraphs of **G** induced on $\operatorname{Dom}(f)$ and $\operatorname{Range}(f)$). If α is an automorphism of **G** such that $f \subseteq \alpha$, we say that f extends to α .

Example

A graph G is vertex-transitive if every partial automorphism f with |Dom(f)| ≤ 1 extends to an automorphism of G.

Let **G** be a graph. A partial function $f: V(\mathbf{G}) \to V(\mathbf{G})$ is a partial automorphism of **G** if f is an isomorphism of $\mathbf{G}[\operatorname{Dom}(f)]$ and $\mathbf{G}[\operatorname{Range}(f)]$ (subgraphs of **G** induced on $\operatorname{Dom}(f)$ and $\operatorname{Range}(f)$). If α is an automorphism of **G** such that $f \subseteq \alpha$, we say that f extends to α .

Example

- A graph G is vertex-transitive if every partial automorphism f with |Dom(f)| ≤ 1 extends to an automorphism of G.
- ▶ A graph **G** is edge-transitive (arc-transitive) if every partial automorphism f with $Dom(f) = \{u, v\}$, where $uv \in E(\mathbf{G})$, extends to an automorphism of **G**.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let **H** be a graph and let **G** be its **induced** subgraph. **H** is an EPPA-witness for **G** if every partial automorphism of **G** extends to an automorphism of **H**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let **H** be a graph and let **G** be its **induced** subgraph. **H** is an EPPA-witness for **G** if every partial automorphism of **G** extends to an automorphism of **H**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A class C of **finite** graphs has EPPA if for every $\mathbf{G} \in C$ there is $\mathbf{H} \in C$, which is an EPPA-witness for \mathbf{G} .

Let **H** be a graph and let **G** be its **induced** subgraph. **H** is an EPPA-witness for **G** if every partial automorphism of **G** extends to an automorphism of **H**.

A class C of **finite** graphs has EPPA if for every $\mathbf{G} \in C$ there is $\mathbf{H} \in C$, which is an EPPA-witness for \mathbf{G} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let **H** be a graph and let **G** be its **induced** subgraph. **H** is an EPPA-witness for **G** if every partial automorphism of **G** extends to an automorphism of **H**.

A class C of **finite** graphs has EPPA if for every $\mathbf{G} \in C$ there is $\mathbf{H} \in C$, which is an EPPA-witness for \mathbf{G} .

Let **H** be a graph and let **G** be its **induced** subgraph. **H** is an EPPA-witness for **G** if every partial automorphism of **G** extends to an automorphism of **H**.

A class C of **finite** graphs has EPPA if for every $\mathbf{G} \in C$ there is $\mathbf{H} \in C$, which is an EPPA-witness for \mathbf{G} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let **H** be a graph and let **G** be its **induced** subgraph. **H** is an EPPA-witness for **G** if every partial automorphism of **G** extends to an automorphism of **H**.

A class C of **finite** graphs has EPPA if for every $\mathbf{G} \in C$ there is $\mathbf{H} \in C$, which is an EPPA-witness for \mathbf{G} .

Let **H** be a graph and let **G** be its **induced** subgraph. **H** is an EPPA-witness for **G** if every partial automorphism of **G** extends to an automorphism of **H**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A class C of **finite** graphs has EPPA if for every $\mathbf{G} \in C$ there is $\mathbf{H} \in C$, which is an EPPA-witness for \mathbf{G} .

Theorem (Hrushovski, 1992)

The class of all finite graphs has EPPA.

Intro for sophisticated people

Let $G \leq \operatorname{Sym}(\mathbb{N})$ be closed, i.e. $G = \operatorname{Aut}(M)$ for some structure M.

Definition (HHLS'93, KR'07)

M has *n*-generic automorphisms if the action of *G* by diagonal conjugation has a comeagre orbit on G^n . It has ample generics if it has *n*-generic automorphisms for every $n \ge 1$.

Intro for sophisticated people

Let $G \leq \operatorname{Sym}(\mathbb{N})$ be closed, i.e. $G = \operatorname{Aut}(M)$ for some structure M.

Definition (HHLS'93, KR'07)

M has *n*-generic automorphisms if the action of *G* by diagonal conjugation has a comeagre orbit on G^n . It has ample generics if it has *n*-generic automorphisms for every $n \ge 1$.

Ample generics imply the small index property, uncountable cofinality, or the 21-Bergman property.

Intro for sophisticated people

Let $G \leq \operatorname{Sym}(\mathbb{N})$ be closed, i.e. $G = \operatorname{Aut}(M)$ for some structure M.

Definition (HHLS'93, KR'07)

M has *n*-generic automorphisms if the action of *G* by diagonal conjugation has a comeagre orbit on G^n . It has ample generics if it has *n*-generic automorphisms for every $n \ge 1$.

Ample generics imply the small index property, uncountable cofinality, or the 21-Bergman property.

Theorem (HHLS'93, KR'07)

Let **M** be structure and $G = Aut(\mathbf{M})$. Assume that **M** has APA and there is a sequence $G_0 \leq G_1 \leq \cdots \leq G$ of compact subgroups such that $G = \bigcup_i \overline{G_i}$. Then **M** has ample generics.

Suppose that a class of finite graphs ${\mathcal C}$ has EPPA.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose that a class of finite graphs \mathcal{C} has EPPA. Pick $\boldsymbol{G}_0 \in \mathcal{C}$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Suppose that a class of finite graphs $\mathcal C$ has EPPA. Pick $\boldsymbol{G}_0\in \mathcal C.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose that a class of finite graphs \mathcal{C} has EPPA. Pick $\boldsymbol{G}_0 \in \mathcal{C}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Suppose that a class of finite graphs \mathcal{C} has EPPA. Pick $\boldsymbol{G}_0 \in \mathcal{C}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Suppose that a class of finite graphs \mathcal{C} has EPPA. Pick $\boldsymbol{G}_0 \in \mathcal{C}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Suppose that a class of finite graphs \mathcal{C} has EPPA. Pick $\textbf{G}_0 \in \mathcal{C}.$

Let M be the union of the chain. Every partial automorphism of M with finite domain extends to an automorphism of M (i.e. M is homogeneous).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Suppose that a class of finite graphs \mathcal{C} has EPPA. Pick $\mathbf{G}_0 \in \mathcal{C}$.

Let M be the union of the chain. Every partial automorphism of M with finite domain extends to an automorphism of M (i.e. M is homogeneous).

 $\operatorname{``Aut}(\mathsf{M}) = \overline{\bigcup \operatorname{Aut}(\mathsf{G}_i)}$

Suppose that a class of finite graphs \mathcal{C} has EPPA. Pick $\mathbf{G}_0 \in \mathcal{C}$.

Let M be the union of the chain. Every partial automorphism of M with finite domain extends to an automorphism of M (i.e. M is homogeneous).

"Aut(\mathbf{M}) = $\overline{\bigcup \operatorname{Aut}(\mathbf{G}_i)}$ "

Observation (Kechris, Rosendal'07)

The class of all substructures of a homogeneous structure M has EPPA if and only if Aut(M) can be written as the closure of a chain of compact subgroups.

Let **H** be a structure and **G** its substructure. **H** is an EPPA-witness for **G** if every partial automorphism of **G** extends to an automorphism of **H**.

A class C of **finite** structures has EPPA if for every $\mathbf{G} \in C$ there is $\mathbf{H} \in C$, which is an EPPA-witness for \mathbf{G} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Hrushovski, 1992) The class of all finite graphs has EPPA.

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

• **G** is bipartite, with

$$V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$$

and $u \sim v$ iff $u + m \leq v$.

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

• **G** is bipartite, with

$$V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$$

and $u \sim v$ iff $u + m \leq v$.

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

• **G** is bipartite, with

$$V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$$

and $u \sim v$ iff $u + m \leq v$.

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

- **G** is bipartite, with $V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$ and $u \sim v$ iff $u + m \leq v$.
- Every permutation of [m] is a partial automorphism of G.

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

- **G** is bipartite, with $V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$ and $u \sim v$ iff $u + m \leq v$.
- Every permutation of [m] is a partial automorphism of G.
- Pick any EPPA-witness and any S ⊆ [m].

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

- **G** is bipartite, with $V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$ and $u \sim v$ iff $u + m \leq v$.
- Every permutation of [m] is a partial automorphism of G.
- Pick any EPPA-witness and any S ⊆ [m].

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

- **G** is bipartite, with $V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$ and $u \sim v$ iff $u + m \leq v$.
- Every permutation of [m] is a partial automorphism of G.
- Pick any EPPA-witness and any S ⊆ [m].

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

- **G** is bipartite, with $V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$ and $u \sim v$ iff $u + m \leq v$.
- Every permutation of [m] is a partial automorphism of G.
- Pick any EPPA-witness and any S ⊆ [m].

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

- **G** is bipartite, with $V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$ and $u \sim v$ iff $u + m \leq v$.
- Every permutation of [m] is a partial automorphism of G.
- Pick any EPPA-witness and any S ⊆ [m].

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

- **G** is bipartite, with $V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$ and $u \sim v$ iff $u + m \leq v$.
- Every permutation of [m] is a partial automorphism of G.
- Pick any EPPA-witness and any S ⊆ [m]. There is a vertex v connected to S and not connected to [m] \ S.

Observation (Hrushovski, 1992)

There is **G** such that every EPPA-witness for **G** has at least $\Omega(2^{n/2})$ vertices, where $n = |V(\mathbf{G})|$.

Proof.

- **G** is bipartite, with $V(\mathbf{G}) = [2m] = \{0, \dots, 2m-1\}$ and $u \sim v$ iff $u + m \leq v$.
- Every permutation of [m] is a partial automorphism of G.
- Pick any EPPA-witness and any S ⊆ [m]. There is a vertex v connected to S and not connected to [m] \ S.
- Hence every EPPA-witness for G has at least Ω(2^m) vertices.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Multiple partial automorphisms are a different beast

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Fix **G**. Define graph **H**:

A D > A P > A B > A B >

э

Fix **G**. Define graph **H**:

イロト イヨト イヨト イ

Fix G. Define graph H:

Vertices of **H** are pairs (v, f), where v ∈ G is the projection and f: G \ {v} → {0,1} is the opinion,

< ロ > < 同 > < 回 > < 回 >

Н

 v_3

イロト イヨト イヨト

Fix G. Define graph H:11Vertices of H are pairs (v, f), where
 $v \in G$ is the projection and
 $f: G \setminus \{v\} \rightarrow \{0, 1\}$ is the opinion,10 $\{(i, f), (j, f')\} \in E(\mathbf{H})$, if and only
if $i \neq i'$ and $f(j) \neq f'(i)$.01H

G

 v_1

(日)

22

 v_3

Fix G. Define graph H:11Vertices of H are pairs (v, f), where
 $v \in G$ is the projection and
 $f: G \setminus \{v\} \rightarrow \{0,1\}$ is the opinion,10 $\{(i, f), (j, f')\} \in E(\mathbf{H}), \text{ if and only}$
if $i \neq i'$ and $f(j) \neq f'(i)$.01

(日)

Fix G. Define graph H:11Vertices of H are pairs (v, f), where
 $v \in G$ is the projection and
 $f: G \setminus \{v\} \rightarrow \{0, 1\}$ is the opinion,10 $\{(i, f), (j, f')\} \in E(H), \text{ if and only}$
if $i \neq i'$ and $f(j) \neq f'(i)$.01 $(V(H)| = n2^{n-1}$ 00

(日) (四) (日) (日) (日)

For $u, v \in G$, we define a flip $F_{u,v}((w, f)) = (w, f')$, where

 $f'(x) = \begin{cases} 1 - f(x) & \text{if } \{w, x\} = \{u, v\} \\ f(x) & \text{otherwise.} \end{cases}$

11 Fix **G**. Define graph **H**: • Vertices of **H** are pairs (v, f), where 10 $v \in G$ is the projection and $f: G \setminus \{v\} \rightarrow \{0,1\}$ is the opinion, 01• $\{(i, f), (j, f')\} \in E(\mathbf{H})$, if and only if $i \neq i'$ and $f(j) \neq f'(i)$. 00 $(V(\mathbf{H})) = n2^{n-1}$ Embed $\mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto (v, f)$ with f having nonzero opinion G

For $u, v \in G$, we define a flip $F_{u,v}((w, f)) = (w, f')$, where

about its smaller neighbours.

$$f'(x) = \begin{cases} 1 - f(x) & \text{if } \{w, x\} = \{u, v\} \\ f(x) & \text{otherwise.} \end{cases}$$

 v_3

 v_1

Fix G. Define graph H:
Vertices of H are pairs (v, f), where v ∈ G is the projection and f: G \ {v} → {0, 1} is the opinion,

• $\{(i, f), (j, f')\} \in E(\mathbf{H})$, if and only if $i \neq i'$ and $f(j) \neq f'(i)$.

 $(V(\mathbf{H})) = n2^{n-1}$

► Embed G → H sending v ↦ (v, f) with f having nonzero opinion about its smaller neighbours.

$$f'(x) = \begin{cases} 1 - f(x) & \text{if } \{w, x\} = \{u, v\} \\ f(x) & \text{otherwise.} \end{cases}$$

Fix **G**. Define graph **H**:

- Vertices of H are pairs (v, f), where v ∈ G is the projection and f: G \ {v} → {0, 1} is the opinion,
- ► {(i, f), (j, f')} $\in E(\mathbf{H})$, if and only if $i \neq i'$ and $f(j) \neq f'(i)$.

 $(V(\mathbf{H})) = n2^{n-1}$

► Embed G → H sending v ↦ (v, f) with f having nonzero opinion about its smaller neighbours.

$$f'(x) = \begin{cases} 1 - f(x) & \text{if } \{w, x\} = \{u, v\} \\ f(x) & \text{otherwise.} \end{cases}$$

Fix **G**. Define graph **H**:

- Vertices of H are pairs (v, f), where v ∈ G is the projection and f: G \ {v} → {0, 1} is the opinion,
- ► {(i, f), (j, f')} $\in E(\mathbf{H})$, if and only if $i \neq i'$ and $f(j) \neq f'(i)$.

 $(V(\mathbf{H})) = n2^{n-1}$

► Embed G → H sending v ↦ (v, f) with f having nonzero opinion about its smaller neighbours.

$$f'(x) = \begin{cases} 1 - f(x) & \text{if } \{w, x\} = \{u, v\} \\ f(x) & \text{otherwise.} \end{cases}$$

Fix $\boldsymbol{G}.$ Define graph $\boldsymbol{H}:$

- Vertices of H are pairs (v, f), where v ∈ G is the projection and f: G \ {v} → {0, 1} is the opinion,
- $\{(i, f), (j, f')\} \in E(\mathbf{H})$, if and only if $i \neq i'$ and $f(j) \neq f'(i)$.

 $(V(\mathbf{H})) = n2^{n-1}$

► Embed G → H sending v ↦ (v, f) with f having nonzero opinion about its smaller neighbours.

$$f'(x) = \begin{cases} 1 - f(x) & \text{if } \{w, x\} = \{u, v\} \\ f(x) & \text{otherwise.} \end{cases}$$

11 Fix **G**. Define graph **H**: • Vertices of **H** are pairs (v, f), where 10 $v \in G$ is the projection and $f: G \setminus \{v\} \rightarrow \{0,1\}$ is the opinion, 01• $\{(i, f), (j, f')\} \in E(\mathbf{H})$, if and only if $i \neq i'$ and $f(j) \neq f'(i)$. 00 $(V(\mathbf{H})) = n2^{n-1}$ Н Embed $\mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto (v, f)$ with f having nonzero opinion G

For $u, v \in G$, we define a flip $F_{u,v}((w, f)) = (w, f')$, where

about its smaller neighbours.

$$f'(x) = \begin{cases} 1 - f(x) & \text{if } \{w, x\} = \{u, v\} \\ f(x) & \text{otherwise.} \end{cases}$$

 v_3

with f having nonzero opinion

about its smaller neighbours.

Fix **G**. Define graph **H**: • Vertices of **H** are pairs (v, f), where $v \in G$ is the projection and $f: G \setminus \{v\} \rightarrow \{0, 1\}$ is the opinion, • $\{(i, f), (j, f')\} \in E(\mathbf{H})$, if and only if $i \neq i'$ and $f(j) \neq f'(i)$. • $|V(\mathbf{H})| = n2^{n-1}$ • Embed $\mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto (v, f)$

Remark

This can be straightforwardly generalised to arbitrary relational structures and less straightforwardly one can also add unary functions.

G

うどの 川 (中国)・(川)・(日)・

 v_3

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 りへぐ

Using the [Lachlan–Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Using the [Lachlan–Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Class of all graphs [Hrushovski, 1992],

Using the [Lachlan–Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

- Class of all graphs [Hrushovski, 1992],
- ▶ classes of all K_n -free graphs, $n \ge 2$ [Hodkinson–Otto, 2003]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Using the [Lachlan–Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

- Class of all graphs [Hrushovski, 1992],
- ▶ classes of all K_n -free graphs, $n \ge 2$ [Hodkinson–Otto, 2003]

various classes of disjoint unions of cliques [easy],

Using the [Lachlan–Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

- Class of all graphs [Hrushovski, 1992],
- ▶ classes of all K_n -free graphs, $n \ge 2$ [Hodkinson–Otto, 2003]

- various classes of disjoint unions of cliques [easy],
- complements thereof,

Using the [Lachlan–Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

- Class of all graphs [Hrushovski, 1992],
- ▶ classes of all K_n -free graphs, $n \ge 2$ [Hodkinson–Otto, 2003]
- various classes of disjoint unions of cliques [easy],
- complements thereof,
- subgraphs of the finite homogeneous graphs [Gardiner76].
Examples

- ► Graphs [Hrushovski, 1992], K_n-free graphs [Hodkinson–Otto, 2003]
- Relational structures (with forbidden cliques) [Herwig, 2000], [Hodkinson–Otto, 2003]
- Metric spaces [Solecki, 2005; Vershik, 2008], also [Conant, 2019]
- Two-graphs [Evans–Hubička–K–Nešetřil, 2018]
- Metrically homogeneous graphs [AB-WHKKKP, 2017], [K, 2019]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Generalised metric spaces [Hubička–K–Nešetřil, 2019+]
- n-partite and semigeneric tournaments [Hubička–Jahel–K–Sabok, 2019+]
- Groups [Siniora, 2017]

Examples

- ► Graphs [Hrushovski, 1992], K_n-free graphs [Hodkinson–Otto, 2003]
- Relational structures (with forbidden cliques) [Herwig, 2000], [Hodkinson–Otto, 2003]
- Metric spaces [Solecki, 2005; Vershik, 2008], also [Conant, 2019]
- Two-graphs [Evans–Hubička–K–Nešetřil, 2018]
- Metrically homogeneous graphs [AB-WHKKKP, 2017], [K, 2019]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Generalised metric spaces [Hubička–K–Nešetřil, 2019+]
- *n*-partite and semigeneric tournaments [Hubička–Jahel–K–Sabok, 2019+]
- Groups [Siniora, 2017]

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 375, Number 11, November 2022, Pages 7601-7667 https://doi.org/10.1090/tran/8654 Article electronically published on July 25, 2022

ALL THOSE EPPA CLASSES (STRENGTHENINGS OF THE HERWIG-LASCAR THEOREM)

JAN HUBIČKA, MATĚJ KONEČNÝ, AND JAROSLAV NEŠETŘIL

ABSTRACT. Let \mathbf{A} be a finite structure. We say that a finite structure \mathbf{B} is an extension property for partial automorphisms (EPPA)-witness for \mathbf{A} if it contains \mathbf{A} as a substructure and every isomorphism of substructures of \mathbf{A}

- Strengthens [Herwig–Lascar, 2000], [Hodkinson–Otto, 2003] and [Evans–Hubička–Nešetřil, 2021].
- General constructions of EPPA-witnesses, sufficient conditions for a class to have EPPA.
- Most of the known relational homogeneous structures.
- Conditions almost isomorphic to [Hubička–Nešetřil, 2017] for Ramsey properties.

Question

Does the class of all finite tournaments have EPPA?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question

Does the class of all finite tournaments have EPPA?

Question

Does the class of all finite structures with a single partial binary function have EPPA?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Does the class of all finite tournaments have EPPA?

Question

Does the class of all finite structures with a single partial binary function have EPPA?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conjecture (Nešetřil'23)

If $\ensuremath{\mathcal{C}}$ has EPPA then it represents all finite groups.

Question

Does the class of all finite tournaments have EPPA?

Question

Does the class of all finite structures with a single partial binary function have EPPA?

Conjecture (Nešetřil'23)

If $\ensuremath{\mathcal{C}}$ has EPPA then it represents all finite groups.

Problem

Give better bounds on the size of EPPA-witnesses (under extra conditions).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Does the class of all finite tournaments have EPPA?

Question

Does the class of all finite structures with a single partial binary function have EPPA?

Conjecture (Nešetřil'23)

If $\ensuremath{\mathcal{C}}$ has EPPA then it represents all finite groups.

Problem

Give better bounds on the size of EPPA-witnesses (under extra conditions). Cycles? Bounded-degree graphs ($\mathcal{O}((\Delta n)^{\Delta})$ [Herwig–Lascar, 2000])? Trees? Planar graphs? Graphs omitting a half-graph? Stable graphs? Random graphs?

Question

Does the class of all finite tournaments have EPPA?

Question

Does the class of all finite structures with a single partial binary function have EPPA?

Conjecture (Nešetřil'23)

If $\ensuremath{\mathcal{C}}$ has EPPA then it represents all finite groups.

Problem

Give better bounds on the size of EPPA-witnesses (under extra conditions). Cycles? Bounded-degree graphs ($\mathcal{O}((\Delta n)^{\Delta})$ [Herwig–Lascar, 2000])? Trees? Planar graphs? Graphs omitting a half-graph? Stable graphs? Random graphs? [Bradley-Williams–Cameron, 2020+]

Question

Does the class of all finite tournaments have EPPA?

Question

Thank you!

Does the class of all finite structures with a single partial binary function have EPPA?

Conjecture (Nešetřil'23)

If $\ensuremath{\mathcal{C}}$ has EPPA then it represents all finite groups.

Problem

Give better bounds on the size of EPPA-witnesses (under extra conditions). Cycles? Bounded-degree graphs ($\mathcal{O}((\Delta n)^{\Delta})$ [Herwig–Lascar, 2000])? Trees? Planar graphs? Graphs omitting a half-graph? Stable graphs? Random graphs? [Bradley-Williams–Cameron, 2020+]

Question

Does the class of all finite tournaments have EPPA?

Question

Thank you!

Does the class of all finite structures with a single partial binary function have EPPA?

Conjecture (Nešet (123) nswers?)

If $\ensuremath{\mathcal{C}}$ has EPPA then it represents all finite groups.

Problem

Give better bounds on the size of EPPA-witnesses (under extra conditions). Cycles? Bounded-degree graphs ($\mathcal{O}((\Delta n)^{\Delta})$ [Herwig–Lascar, 2000])? Trees? Planar graphs? Graphs omitting a half-graph? Stable graphs? Random graphs? [Bradley-Williams–Cameron, 2020+]

If the maximum degree of **G** is Δ , then there is an EPPA-witness on $\mathcal{O}((\Delta n)^{\Delta})$ vertices.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

If the maximum degree of **G** is Δ , then there is an EPPA-witness on $\mathcal{O}((\Delta n)^{\Delta})$ vertices.

Proof.

1. Let $\mathbf{G} = (V, E)$ be a graph. Assume that \mathbf{G} is k-regular.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If the maximum degree of **G** is Δ , then there is an EPPA-witness on $\mathcal{O}((\Delta n)^{\Delta})$ vertices.

Proof.

- 1. Let $\mathbf{G} = (V, E)$ be a graph. Assume that \mathbf{G} is k-regular.
- 2. Define **H** so that $V(\mathbf{H}) = {E \choose k}$ and $XY \in E(\mathbf{H})$ if $X \cap Y \neq \emptyset$.

If the maximum degree of **G** is Δ , then there is an EPPA-witness on $\mathcal{O}((\Delta n)^{\Delta})$ vertices.

Proof.

- 1. Let $\mathbf{G} = (V, E)$ be a graph. Assume that \mathbf{G} is k-regular.
- 2. Define **H** so that $V(\mathbf{H}) = {E \choose k}$ and $XY \in E(\mathbf{H})$ if $X \cap Y \neq \emptyset$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Every permutation of E induces an automorphism of **H**.

If the maximum degree of **G** is Δ , then there is an EPPA-witness on $\mathcal{O}((\Delta n)^{\Delta})$ vertices.

Proof.

- 1. Let $\mathbf{G} = (V, E)$ be a graph. Assume that \mathbf{G} is k-regular.
- 2. Define **H** so that $V(\mathbf{H}) = {E \choose k}$ and $XY \in E(\mathbf{H})$ if $X \cap Y \neq \emptyset$.

- Every permutation of E induces an automorphism of **H**.
- 3. Embed $\psi : \mathbf{G} \to \mathbf{H}$ sending $v \mapsto \{e \in E : v \in e\}$.

If the maximum degree of **G** is Δ , then there is an EPPA-witness on $\mathcal{O}((\Delta n)^{\Delta})$ vertices.

Proof.

- 1. Let $\mathbf{G} = (V, E)$ be a graph. Assume that \mathbf{G} is k-regular.
- 2. Define **H** so that $V(\mathbf{H}) = {E \choose k}$ and $XY \in E(\mathbf{H})$ if $X \cap Y \neq \emptyset$.

• Every permutation of E induces an automorphism of **H**.

- 3. Embed $\psi : \mathbf{G} \to \mathbf{H}$ sending $v \mapsto \{e \in E : v \in e\}$.
- 4. A partial automorphism of **G** gives a partial permutation of E.

If the maximum degree of **G** is Δ , then there is an EPPA-witness on $\mathcal{O}((\Delta n)^{\Delta})$ vertices.

Proof.

- 1. Let $\mathbf{G} = (V, E)$ be a graph. Assume that \mathbf{G} is k-regular.
- 2. Define **H** so that $V(\mathbf{H}) = {E \choose k}$ and $XY \in E(\mathbf{H})$ if $X \cap Y \neq \emptyset$.
- Every permutation of E induces an automorphism of H.
- 3. Embed $\psi : \mathbf{G} \to \mathbf{H}$ sending $v \mapsto \{e \in E : v \in e\}$.
- 4. A partial automorphism of **G** gives a partial permutation of E.

5. Extend it to a permutation of E respecting the partial automorphism.

If the maximum degree of **G** is Δ , then there is an EPPA-witness on $\mathcal{O}((\Delta n)^{\Delta})$ vertices.

Proof.

- 1. Let $\mathbf{G} = (V, E)$ be a graph. Assume that \mathbf{G} is k-regular.
- 2. Define **H** so that $V(\mathbf{H}) = {E \choose k}$ and $XY \in E(\mathbf{H})$ if $X \cap Y \neq \emptyset$.
- Every permutation of E induces an automorphism of H.
- 3. Embed $\psi : \mathbf{G} \to \mathbf{H}$ sending $v \mapsto \{e \in E : v \in e\}$.
- 4. A partial automorphism of **G** gives a partial permutation of E.
- 5. Extend it to a permutation of E respecting the partial automorphism.

For non-k-regular graphs, add "half-edges" to make them regular.