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Intro for me

Let G be a graph. A partial function f : V (G) → V (G) is a partial
automorphism of G if f is an isomorphism of G[Dom(f )] and
G[Range(f )] (subgraphs of G induced on Dom(f ) and Range(f )).

If α is an automorphism of G such that f ⊆ α, we say that f
extends to α.

Example

▶ A graph G is vertex-transitive if every partial automorphism f
with |Dom(f )| ≤ 1 extends to an automorphism of G.

▶ A graph G is edge-transitive (arc-transitive) if every partial
automorphism f with Dom(f ) = {u, v}, where uv ∈ E (G),
extends to an automorphism of G.
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Definition (EPPA, extension property for partial
automorphisms)

Let H be a graph and let G be its induced subgraph. H is an
EPPA-witness for G if every partial automorphism of G extends to
an automorphism of H.

A class C of finite graphs has EPPA if for every G ∈ C there is
H ∈ C, which is an EPPA-witness for G.
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Definition (EPPA, extension property for partial
automorphisms)

Let H be a graph and let G be its induced subgraph. H is an
EPPA-witness for G if every partial automorphism of G extends to
an automorphism of H.
A class C of finite graphs has EPPA if for every G ∈ C there is
H ∈ C, which is an EPPA-witness for G.

Theorem (Hrushovski, 1992)

The class of all finite graphs has EPPA.



Intro for sophisticated people

Let G ≤ Sym(N) be closed, i.e. G = Aut(M) for some structure
M.

Definition (HHLS’93, KR’07)

M has n-generic automorphisms if the action of G by diagonal
conjugation has a comeagre orbit on Gn. It has ample generics if it
has n-generic automorphisms for every n ≥ 1.

Ample generics imply the small index property, uncountable
cofinality, or the 21-Bergman property.

Theorem (HHLS’93, KR’07)

Let M be structure and G = Aut(M). Assume that M has APA
and there is a sequence G0 ≤ G1 ≤ · · · ≤ G of compact subgroups
such that G =

⋃
i Gi . Then M has ample generics.
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A connection
Suppose that a class of finite graphs C has EPPA.

Pick G0 ∈ C.

Let M be the union of the chain. Every partial automorphism of M
with finite domain extends to an automorphism of M (i.e. M is
homogeneous).

“Aut(M) =
⋃

Aut(Gi )”

Observation (Kechris, Rosendal’07)

The class of all substructures of a homogeneous structure M has
EPPA if and only if Aut(M) can be written as the closure of a
chain of compact subgroups.
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Definition (EPPA, extension property for partial
automorphisms)

Let H be a structure and G its substructure. H is an
EPPA-witness for G if every partial automorphism of G extends to
an automorphism of H.
A class C of finite structures has EPPA if for every G ∈ C there is
H ∈ C, which is an EPPA-witness for G.
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Theorem (Hrushovski, 1992)

The class of all finite graphs has EPPA.



A lower bound

Observation (Hrushovski, 1992)

There is G such that every EPPA-witness for G has at least
Ω(2n/2) vertices, where n = |V (G)| .

Proof.

▶ G is bipartite, with
V (G) = [2m] = {0, . . . , 2m − 1}
and u ∼ v iff u +m ≤ v .

� Every permutation of [m] is a
partial automorphism of G.

▶ Pick any EPPA-witness and any
S ⊆ [m].

There is a vertex v
connected to S and not
connected to [m] \ S .

▶ Hence every EPPA-witness for G
has at least Ω(2m) vertices.
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Multiple partial automorphisms are a different beast



An upper bound [Hubička, K, Nešeťril 2019]

Fix G. Define graph H:

▶ Vertices of H are pairs (v , f ), where
v ∈ G is the projection and
f : G \ {v} → {0, 1} is the opinion,

▶ {(i , f ), (j , f ′)} ∈ E (H), if and only
if i ̸= i ′ and f (j) ̸= f ′(i).

� |V (H)| = n2n−1

▶ Embed G → H sending v 7→ (v , f )
with f having nonzero opinion
about its smaller neighbours.

G

v1

v2
v3
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For u, v ∈ G , we define a flip Fu,v ((w , f )) = (w , f ′), where

f ′(x) =

{
1− f (x) if {w , x} = {u, v}
f (x) otherwise.
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Remark
This can be straightforwardly generalised to arbitrary relational structures
and less straightforwardly one can also add unary functions.



Classification programme of homogeneous structures

Using the [Lachlan–Woodrow, 1980] classification of homogeneous
graphs, we know all EPPA classes of graphs:

▶ Class of all graphs [Hrushovski, 1992],

▶ classes of all Kn-free graphs, n ≥ 2 [Hodkinson–Otto, 2003]

▶ various classes of disjoint unions of cliques [easy],

▶ complements thereof,

▶ subgraphs of the finite homogeneous graphs [Gardiner76].
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Examples

▶ Graphs [Hrushovski, 1992], Kn-free graphs [Hodkinson–Otto, 2003]

▶ Relational structures (with forbidden cliques) [Herwig, 2000],
[Hodkinson–Otto, 2003]

▶ Metric spaces [Solecki, 2005; Vershik, 2008], also [Conant, 2019]

▶ Two-graphs [Evans–Hubička–K–Nešeťril, 2018]

▶ Metrically homogeneous graphs [AB-WHKKKP, 2017], [K, 2019]

▶ Generalised metric spaces [Hubička–K–Nešeťril, 2019+]

▶ n-partite and semigeneric tournaments
[Hubička–Jahel–K–Sabok, 2019+]

▶ Groups [Siniora, 2017]

▶ . . .



Examples

▶ Graphs [Hrushovski, 1992], Kn-free graphs [Hodkinson–Otto, 2003]

▶ Relational structures (with forbidden cliques) [Herwig, 2000],
[Hodkinson–Otto, 2003]

▶ Metric spaces [Solecki, 2005; Vershik, 2008], also [Conant, 2019]

▶ Two-graphs [Evans–Hubička–K–Nešeťril, 2018]
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▶ Strengthens [Herwig–Lascar, 2000], [Hodkinson–Otto, 2003]
and [Evans–Hubička–Nešeťril, 2021].

▶ General constructions of EPPA-witnesses, sufficient conditions
for a class to have EPPA.

▶ Most of the known relational homogeneous structures.

▶ Conditions almost isomorphic to [Hubička–Nešeťril, 2017] for
Ramsey properties.



Open problems

Question
Does the class of all finite tournaments have EPPA?

Question
Does the class of all finite structures with a single partial binary
function have EPPA?

Conjecture (Nešeťril’23)

If C has EPPA then it represents all finite groups.

Problem
Give better bounds on the size of EPPA-witnesses (under extra
conditions). Cycles? Bounded-degree graphs (O

(
(∆n)∆

)
[Herwig–Lascar, 2000])? Trees? Planar graphs? Graphs omitting a
half-graph? Stable graphs? Random graphs?
[Bradley-Williams–Cameron, 2020+]

Thank you!

(Answers?)
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Theorem (Herwig, Lascar 2000)

If the maximum degree of G is ∆, then there is an EPPA-witness
on O

(
(∆n)∆

)
vertices.

Proof.

1. Let G = (V ,E ) be a graph. Assume that G is k-regular.

2. Define H so that V (H) =
(E
k

)
and XY ∈ E (H) if X ∩ Y ̸= ∅.

� Every permutation of E induces an automorphism of H.

3. Embed ψ : G → H sending v 7→ {e ∈ E : v ∈ e}.
4. A partial automorphism of G gives a partial permutation of E .

5. Extend it to a permutation of E respecting the partial
automorphism.

For non-k-regular graphs, add “half-edges” to make them regular.
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